Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
United European Gastroenterol J ; 11(5): 431-447, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20230969

ABSTRACT

BACKGROUND: Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs. OBJECTIVE: This study aims to profile the effects of immunosuppressants and the combination of immunosuppressants with oral antiviral drugs molnupiravir and nirmatrelvir on pan-coronavirus infection in cell and human airway organoids (hAOs) culture models. METHODS: Different coronaviruses (including wild type, delta and omicron variants of SARS-CoV-2, and NL63, 229E and OC43 seasonal coronaviruses) were used in lung cell lines and hAOs models. The effects of immunosuppressants were tested. RESULTS: Dexamethasone and 5-aminosalicylic acid moderately stimulated the replication of different coronaviruses. Mycophenolic acid (MPA), 6-thioguanine (6-TG), tofacitinib and filgotinib treatment dose-dependently inhibited viral replication of all tested coronaviruses in both cell lines and hAOs. The half maximum effective concentration (EC50) of tofacitinib against SARS-CoV-2 was 0.62 µM and the half maximum cytotoxic concentration (CC50) was above 30 µM, which resulted in a selective index (SI) of about 50. The anti-coronavirus effect of the JAK inhibitors tofacitinib and filgotinib is dependent on the inhibition of STAT3 phosphorylation. Combinations of MPA, 6-TG, tofacitinib, and filgotinib with the oral antiviral drugs molnupiravir or nirmatrelvir exerted an additive or synergistic antiviral activity. CONCLUSIONS: Different immunosuppressants have distinct effects on coronavirus replication, with 6-TG, MPA, tofacitinib and filgotinib possessing pan-coronavirus antiviral activity. The combinations of MPA, 6-TG, tofacitinib and filgotinib with antiviral drugs exerted an additive or synergistic antiviral activity. Thus, these findings provide an important reference for optimal management of immunocompromised patients infected with coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
2.
EBioMedicine ; 81: 104132, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1996118

ABSTRACT

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 229E, Human , Respiratory Tract Infections , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 229E, Human/genetics , Humans , Organoids/pathology , Respiratory System/pathology , Respiratory Tract Infections/pathology , Seasons
3.
Transplantation ; 106(10): 2068-2075, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1909080

ABSTRACT

BACKGROUND: The rapid development and universal access to vaccines represent a milestone in combating the coronavirus disease 2019 (COVID-19) pandemic. However, there are major concerns about vaccine response in immunocompromised populations in particular transplant recipients. In the present study, we aim to comprehensively assess the humoral response to COVID-19 vaccination in both orthotopic organ transplant and allogeneic hematopoietic stem cell transplant recipients. METHODS: We performed a systematic review and meta-analysis of 96 studies that met inclusion criteria. RESULTS: The pooled rates of seroconversion were 49% (95% confidence interval [CI], 43%-55%) in transplant recipients and 99% (95% CI, 99%-99%) in healthy controls after the second dose of vaccine. The pooled rate was 56% (95% CI, 49%-63%) in transplant recipients after the third dose. Immunosuppressive medication is the most prominent risk factor associated with seroconversion failure, but different immunosuppressive regimens are associated with differential outcomes in this respect. Calcineurin inhibitors, steroids, or mycophenolate mofetil/mycophenolic acid are associated with an increased risk of seroconversion failure, whereas azathioprine or mammalian target of rapamycin inhibitors do not. Advanced age, short interval from receiving the vaccine to the time of transplantation, or comorbidities confers a higher risk for seroconversion failure. CONCLUSIONS: Transplant recipients compared with the general population have much lower rates of seroconversion upon receiving COVID-19 vaccines. Immunosuppressants are the most prominent factors associated with seroconversion, although different types may have differential effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Azathioprine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Calcineurin Inhibitors/therapeutic use , Humans , Immunosuppressive Agents/adverse effects , Mycophenolic Acid/adverse effects , TOR Serine-Threonine Kinases
5.
Arch Virol ; 167(4): 1125-1130, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1694546

ABSTRACT

Given the structural similarities of the viral enzymes of different coronaviruses (CoVs), we investigated the potency of the anti-SARS-CoV-2 agents boceprevir and GC376 for counteracting seasonal coronavirus infections. In contrast to previous findings that both boceprevir and GC376 are potent inhibitors of the main protease (Mpro) of SARS-CoV-2, we found that GC376 is much more effective than boceprevir in inhibiting SARS-CoV-2 and three seasonal CoVs (NL63, 229E, and OC43) in cell culture models. However, these results are discordant with a molecular docking analysis that suggested comparable affinity of boceprevir and GC376 for the different Mpro enzymes of the four CoVs. Collectively, our results support future development of GC376 but not boceprevir (although it is an FDA-approved antiviral medication) as a pan-coronavirus antiviral agent. Furthermore, we caution against overinterpretation of in silico data when developing antiviral therapies.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Pyrrolidines , SARS-CoV-2 , Sulfonic Acids
6.
Virology ; 564: 33-38, 2021 12.
Article in English | MEDLINE | ID: covidwho-1447220

ABSTRACT

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Subject(s)
Coronavirus 229E, Human/genetics , Coronavirus Infections/drug therapy , Coronavirus NL63, Human/genetics , Coronavirus OC43, Human/genetics , Cytidine/analogs & derivatives , Hydroxylamines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Common Cold/drug therapy , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/drug effects , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/physiology , Cytidine/pharmacology , Humans , Molecular Docking Simulation , Protein Binding/drug effects , Pyrrolidines/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Seasons , Sulfonic Acids/pharmacology , Virus Replication/drug effects , Virus Replication/genetics
8.
Int J Infect Dis ; 102: 375-380, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1060138

ABSTRACT

OBJECTIVES: This study aimed to comprehensively compare the clinical features of hospitalized COVID-19 patients with hospitalized 2009 influenza pandemic patients. METHODS: Medline, Embase, Web of Science, Cochrane CENTRAL, and Google scholar were systematically searched to identify studies related to COVID-19 and the 2009 influenza pandemic. The pooled incidence rates of clinical features were estimated using the DerSimonian-Laird random-effects model with the Freeman-Tukey double arcsine transformation method. RESULTS: The incidence rates of fever, cough, shortness of breath, sore throat, rhinorrhea, myalgia/muscle pain, or vomiting were found to be significantly higher in influenza patients when compared with COVID-19 patients. The incidence rates of comorbidities, including cardiovascular disease/hypertension and diabetes, were significantly higher in COVID-19 compared with influenza patients. In contrast, comorbidities such as asthma, chronic obstructive pulmonary disease, and immunocompromised conditions were significantly more common in influenza compared with COVID-19 patients. Unexpectedly, the estimated rates of intensive care unit admission, treatment with extracorporeal membrane oxygenation, treatment with antibiotics, and fatality were comparable between hospitalized COVID-19 and 2009 influenza pandemic patients. CONCLUSIONS: This study comprehensively estimated the differences and similarities of the clinical features and burdens of hospitalized COVID-19 and 2009 influenza pandemic patients. This information will be important to better understand the current COVID-19 pandemic.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Female , Hospitalization , Humans , Infant , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged , Orthomyxoviridae/physiology , Pandemics , SARS-CoV-2/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL